МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

декан факультета прикладной математики, информатики и механики А.И. Шашкин 24.06.2021

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.05 Математические методы в криптографии

1. Код и наименование направления подготовки / специальности:

01.04.02 Прикладная математика и информатика

2. Профиль подготовки / специализация/магистерская программа:

Математическое и программное обеспечение информационных систем

- 3. Квалификация (степень) выпускника: магистр
- 4. Форма обучения: очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** ERP-систем и бизнес процессов
- **6. Составители программы:** Степанец Юлия Александровна, к.т.н., доцент кафедры ERP-систем и бизнес-процессов
- **7. Рекомендована:** НМС факультета Прикладной математики, информатики и механики № 10 от 15.06.2021
- 8. Учебный год: 2022/2023 Семестр(ы): 4

9. Цели и задачи учебной дисциплины

Цели изучения дисциплины: получение теоретических и практических знаний, необходимых для проектирования и реализации адаптивных криптографических систем; получение опыта организации и руководства проведения работ по обработке и анализу научно-технической информации.

Задачи изучения дисциплины: получение знаний об основных тенденциях развития информационных технологий в области защиты БД, способов и технологий обновления защищённых БД, механизмов контроля обновления БД; получение навыков проведения анализа возможностей внедрения новых информационных технологий, планирования и осуществления мероприятий по переходу на новые версии защищённых БД; приобретение опыта разработки и описания типовых процессов миграции защищённых БД на новые платформы и новые версии ПО.

10. Место учебной дисциплины в структуре ООП: (цикл, к которому относится дисциплина, требования к входным знаниям, умениям и навыкам, дисциплины, для которых данная дисциплина является предшествующей)

Дисциплина относится к части, формируемой участниками образовательных отношений, блока Б1 дисциплин учебного плана.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения

Код	Название	Код(ы)	Индикаторы(ы)	Планируемые результаты
КОД	компетенции	Код(ві)	индикаторы(ы)	обучения
ПК-1	Способен	ПК-1.3	Du Gungot Motoriu nouvouva	j
I IK-I		11K-1.3	Выбирает методы решения	Знать:
	проводить		поставленной задачи с учетом	основные тенденции развития
	работы по		имеющихся ресурсов, а также	информационных технологий
	обработке и		теоретического обобщения	в области защиты БД,
	анализу		научных данных, результатов	способы и технологии
	научно-		экспериментов и наблюдений.	обновления защищённых БД,
	технической			механизмы контроля
	информации,			обновления БД.
	результатов			Умеет анализировать
	исследований			возможности внедрения новых
	, ,			информационных технологий,
ПК-2	Способен	ПК-2.2	Организует сбор и изучение	планировать, организовывать
	осуществлять		научно-технической	и осуществлять мероприятия
	научное		информации по теме	по переходу на новые версии
	руководство		проводимых исследований и	защищённых БД.
	проведением		разработок.	Владеет навыками разработки
	исследований		Paispaise : e.i	l
	по отдельным			и описания типовых процессов
				миграции защищённых БД на
	задачам			новые платформы и новые
				версии

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом —2/72.

Форма промежуточной аттестации зачет с оценкой.

13. Трудоемкость по видам учебной работы

	Вид учебной работы	Трудоемкость (часы)
--	--------------------	---------------------

			В том числе в интеракти вной форме	По семестрам		
		Всего		№ сем. 4	№ сем.	
Ay	диторные занятия					
в том числе:	лекции	24		24		
	практические	-		1		
	лабораторные	12		12		
Самос	тоятельная работа	36		36		
Форма промежуточной аттестации		Зачет с оценкой		Зачет с оценкой		
	Итого:	72		72		

13.1. Содержание дисциплины

№ п/п	Наименование раздела дисциплины		Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
			1. Лекции	
1.1	Стойкость криптографиче систем		Информационно-теоретический подход, подход на основе теории сложности	Математические методы в криптографии
1.2	.2 Математические модели шифрования с использованием конечных полей		Первообразные корни, дискретные логарифмы, поля Галуа	(01.04.02)
1.3	.3 Линейные рекуррентные последовательности над конечными полями		Элементы теории конечного поля. Последовательности максимального периода	
1.4	.4 Применение конечных полей в поточных шифрах		Адаптивные криптографические системы	
			2. Лабораторные работы	
2.1	Линейные рекуррентнь последователы над конечны полями	ые ности	Простые поля Галуа в криптографии.	
2.2	Применение кон полей в поточ шифрах		Расширенные поля Галуа в криптографии	

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Цаимонование разпола	Виды занятий (часов)					
п/ п	Наименование раздела дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего	
1	Стойкость криптографических систем	4			6	10	
2	Математические модели шифрования с использованием конечных полей	10			18	34	

3	Линейные				
	рекуррентные	6	6	12	24
	последовательности	0		12	27
	над конечными полями				
4	Применение конечных				
	полей в поточных	4	6	-	4
	шифрах				
	Итого:	24	12	36	72

14. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины включает в себя лекционные занятия, лабораторные работы и самостоятельную работу обучающихся. На первом занятии студент получает информацию для доступа к комплексу учебно-методических материалов.

Лекционные занятия посвящены рассмотрению теоретических основ базовых понятий, стандартов. Лабораторные работы предназначены для формирования умений и навыков, закрепленных компетенций по ОПОП. Самостоятельная работа студентов включает в себя проработку учебного материала лекций, подготовку к лабораторным работам и к зачету.

Для успешного освоения дисциплины рекомендуется подробно конспектировать лекционный материал, перед лабораторными работами просматривать конспекты лекций.

При использовании дистанционных образовательных технологий и электронного обучения следует выполнять все указания преподавателя по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

Nº п/п	Источник
1	Рябко, Б. Я. Криптографические методы защиты информации : учебное пособие / Б. Я. Рябко, А. Н. Фионов. — 2-е изд., стер. — Москва : Горячая линия-Телеком, 2017. — 230 с. — ISBN 978-5-9912-0286-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/111097. — Режим доступа: для авториз. пользователей.

б) дополнительная литература:

<u>9) Hon</u>	олнительная литература.
№ п/п	Источник
2	Богульская, Н. А. Модели безопасности компьютерных систем: учебное пособие / Н. А. Богульская, М. М. Кучеров. — Красноярск: СФУ, 2019. — 206 с. — ISBN 978-5-7638-4008-7. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/157578. — Режим доступа: для авториз. пользователей.
3	Бутакова, Н. Г. Криптографические методы и средства защиты информации : учебное пособие / Н. Г. Бутакова, Н. В. Федоров. — Санкт-Петербург : Интермедия, 2020. — 380 с. — ISBN 978-5-4383-0210-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/161347. — Режим доступа: для авториз. пользователей.
4	Криптографические методы защиты информации : учебное пособие / составители И. А. Калмыков [и др.]. — Ставрополь : СКФУ, 2015. — 109 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/155280. — Режим доступа: для авториз. пользователей.

в) информационные электронно-образовательные ресурсы:

Ν º π/π	Источник
5	Электронно-библиотечная система «Лань» Режим доступа: https://e.lanbook.com.
6	Электронный каталог Научной библиотеки Воронежского государственного университета. – Режим доступа: http://www.lib.vsu.ru.
7	Математические методы в криптографии (01.04.02)/ Ю.А. Степанец — Образовательный портал «Электронный университет ВГУ». — Режим доступа: https://edu.vsu.ru/

16. Перечень учебно-методического обеспечения для самостоятельной работы Самостоятельная работа обучающегося должна включать подготовку к лабораторным работам и подготовку к промежуточной аттестации.

Для обеспечения самостоятельной работы студентов в электронном курсе дисциплины на образовательном портале «Электронный университет ВГУ» сформирован учебно-методический комплекс, который включает в себя: программу курса, учебные пособия и справочные материалы, методические указания по выполнению проекта. Студенты получают доступ к данным материалам на первом занятии по дисциплине.

Указанные в учебно-методическом комплексе учебные пособия и справочные материалы, приведены в таблице ниже:

№ п/п	Источник
1	Рябко, Б. Я. Криптографические методы защиты информации : учебное пособие / Б. Я. Рябко, А. Н. Фионов. — 2-е изд., стер. — Москва : Горячая линия-Телеком, 2017. — 230 с. — ISBN 978-5-9912-0286-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/111097. — Режим доступа: для авториз. пользователей.
2	Богульская, Н. А. Модели безопасности компьютерных систем: учебное пособие / Н. А. Богульская, М. М. Кучеров. — Красноярск: СФУ, 2019. — 206 с. — ISBN 978-5-7638-4008-7. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/157578. — Режим доступа: для авториз. пользователей.
3	Электронно-библиотечная система «Лань» Режим доступа: https://e.lanbook.com.
4	Электронный каталог Научной библиотеки Воронежского государственного университета. – Режим доступа: http://:www.lib.vsu.ru.
5	Математические методы в криптографии (01.04.02)/ Ю.А. Степанец — Образовательный портал «Электронный университет ВГУ». — Режим доступа: https://edu.vsu.ru/

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение)

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий, для организации самостоятельной работы обучающихся используется онлайн-курс, размещенный на платформе Электронного университета ВГУ (LMS moodle), а также другие Интернет-ресурсы, приведенные в п.15в.

18. Материально-техническое обеспечение дисциплины:

Лекции: лекционная аудитория, учебная мебель, компьютер (ноутбук), мультимедийное оборудование (проектор, экран, средства звуковоспроизведения).

Лабораторные работы: специализированная аудитория, оснащенная учебной мебелью и персональными компьютерами для индивидуальной работы с

возможностью подключения к сети «Интернет» (компьютерные классы, студии), мультимедийное оборудование (проектор, экран, средства звуковоспроизведения).

Самостоятельная работа: учебная мебель, компьютерный класс, компьютер с возможностью подключения к сети «Интернет» и электронной платформе Электронного университета ВГУ.

Программное обеспечение:

- OC Windows 8 (10),
- интернет-браузер (Google Chrome, Mozilla Firefox);
- ΠΟ Adobe Reader;
- пакет стандартных офисных приложений для работы с документами, таблицами (MS Office, МойОфис, LibreOffice).

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº	Наименования раздела	Компетенция(и)	Индикатор(ы)	Оценочные
п/п	дисциплины		достижения	средства
			компетенции	
1	Стойкость криптографических	ПК-1, ПК-2	ПК-1.3, ПК-2.2	Лабораторная
	систем			работа
	Математические модели	ПК-1, ПК-2	ПК-1.3, ПК-2.2	Лабораторная
2	шифрования с использованием			работа
	конечных полей			
3	Линейные рекуррентные	ПК-1, ПК-2	ПК-1.3, ПК-2.2	Лабораторная
	последовательности над			работа
	конечными полями			
4	Применение конечных полей в	ПК-1, ПК-2	ПК-1.3, ПК-2.2	Лабораторная
	поточных шифрах			работа
	Промежуточная аттестация, фо	рма контроля – зачет	г с оценкой	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: лабораторные работы.

Перечень лабораторных работ

Лабораторная работа №1 Простые поля Галуа в криптографии.

Содержание

Теоретические сведения 1. Формула и теорема Эйлера. 2. Обратные по модулю величины. 3. Шифрование и расшифрование в БД. Практическая часть 1. Освоение законов модулярной арифметики. 2. Подготовка и защита отчёта по лабораторной работе.

Лабораторная работа №2 Расширенные поля Галуа в криптографии.

Содержание

Теоретические сведения 1. Современные стандарты криптопреобразований. 2. Защита информации в БД. 3. Имитозащита. 4. Режимы работы криптосистем.

Практическая часть 1. Освоение стандартов криптозащиты в БД. 2. Подготовка и защита отчёта по лабораторной работе.

Технология проведения

Студент выполняет предложенные преподавателем задания, результаты представляет на дисплее, комментирует выполненные действия, анализирует и интерпретирует результаты.

Критерии оценивания

- оценивается «зачтено», если работа выполнена в полном объеме (выполнены все задания, даны пояснения);
- оценивается «не зачтено», работа выполнена не полностью или в представленной части много ошибок.

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств: вопросы к зачету.

Перечень вопросов к зачету

- 1. Классификация криптографических методов защиты информации.
- 2. Основная теорема арифметики. Некоторые проблемы теории чисел.
- 3. Атаки на криптосистемы с симметричными ключами. Ограничения на использование идеальных криптосистем.
- 4. Стойкость криптосистем и алгоритмов.
- 5. Информационно-теоретический подход к оценке стойкости криптосистем.
- 6. Вычислительная сложность криптоалгоритмов.
- 7. Первообразные корни и их свойства.
- 8. Индексы (дискретные логарифмы) и их свойства.
- 9. Поля Галуа. Многочлены над простыми полями.
- 10. Китайская теорема об остатках для многочленов.
- 11. Линейные рекуррентные последовательности над конечными полями. Последовательности максимального периода.
- 12. Методы защиты информации в БД.
- 13. Криптоанализ алгоритмов защиты информации.
- 14. Применение конечных полей в поточных шифрах.

Критерии оценки ответов на вопросы зачета

Для оценивания результатов обучения на зачете используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Уровень сформирова нности компетенций	Шкала оценок
Обучающийся в полной мере владеет теоретическими основами дисциплины, способен иллюстрировать ответ примерами, все лабораторные работы выполнены.	Повышенны й уровень	Отлично

Обучающийся владеет теоретическими основами	Базовый	Хорошо
дисциплины, способен иллюстрировать ответ	уровень	
примерами, но допускает ошибки при ответе, все		
лабораторные работы выполнены.		
Обучающийся частично владеет частично	Пороговый	Удовлетвори-
теоретическими основами дисциплины, фрагментарно	уровень	тельно
способен иллюстрировать ответ примера, все		
лабораторные работы выполнены.		
Обучающийся демонстрирует отрывочные,	_	Неудовлетво-
фрагментарные знания, лабораторные работы не		рительно
выполнены		